Final Thesis Report

Ryan T. Blatz

Structural Option

Thesis Consultant: Dr. Hanagan April 4th, 2012

Orange Regional Medical Center

Middletown, NY

TABLE OF CONTENTS

Executive Summary	5
Acknowledgments	6
Introduction	7
Existing Structural System	7
Foundations	7
Floor System	8
Gravity System	8
Lateral System	8
General Structural Information	10
Thesis Objective	10
Problem Statement	10
Structural Depth – Problem Solution	11
Breath Topic 1 – Cost and Schedule Analysis	11
Breadth Topic 2 – Architectural Redesign	12
Building Loads	12
Dead Loads	12
Live Loads	12
Snow Loads	13
Wind Loads	13
Seismic Loads	16
Overturning Moment and Foundations	17
Gravity Redesign	18
Flat Slab and Drop Panels	18
Column Design	20
Lateral Redesign	20
Flat Slab and Drop Panels	20
Column Design	20
Shear Wall Design	22
Story Drifts	22
ETABS Model	23
Breadth Topic 1 – Cost and Schedule	24
Cost Analysis	24
Construction Schedule	25
Breath Topic 2 – Architectural Redesign	27
Medical Department Layout	27
Green Roof Addition	29
Conclusions	30
References	31

TABLE OF CONTENTS

Appendices	
Appendix A: Snow Load and Drift Calculations	
Appendix B: Wind Calculations	
Appendix C: Seismic Calculations	
Appendix D: Column Design	39
Appendix E: Cost Data	45
Appendix F: Steel Construction Schedule	
Appendix G: Portal Method	50
Appendix H: Spot Checks	
Appendix I: Typical Floor Plans	

EXECUTIVE SUMMARY

The existing steel structure of Orange Regional Medical Center effectively handles the various loadings it is exposed to; this was made clear from earlier technical reports. However, there were areas that raised interest and brought up the question of whether a more efficient system exists. From the first look at the existing lateral system, one would question whether fifty lateral frames is necessary to control lateral drifts. From this question, it was determined to redesign the structure of ORMC as a concrete flat slab system, using moment frames for lateral support.

From early analysis in this report, it was made clear that the flat slab system would be effective against gravity loading, with all deflection, shear and moment values falling well within their limits. However, once the building was subjected to seismic loading, which was the predominant lateral force, issues arose in moment capacity and story drifts. The 8,394 kip base shear caused moment concentrations at the columns of the second floor where the building geometry changes. As an end result, it was determined that shear walls were necessary around the elevator shafts to control these forces and bring down the story drift values. The moment frames still serve as the primary lateral resistance system, taking over 75% of the lateral load. This was accomplished with an 11 inch slab teamed with column sizes of 30x30's spanning the entire height, 20x20's for the lower section, and 24x24's in the administration wing to control drift values.

A cost and schedule analysis was run for comparison purposes with the existing structure. The results showed that the concrete system would cost roughly \$20 million. This is almost twice the cost of the existing structure, and since ORMC had to work with a tight budget, this ultimately labeled the flat slab system as not being a viable alternative. The construction schedule yielded expected results with the concrete system taking about six weeks longer to construct. This also adds cost to this system and gives additional reasons for why the concrete system would not be a better alternative.

Successful architectural layouts were established in a redesign of the medical departments. The goal was to provide efficient flow by placing the Emergency Room, Operating Room, and Intensive Care Unit next to one another. This redesign only impacted the first and third floors, but all departments were able to maintain their existing square footage. The redesign also focused on comfort by relocating the healing garden to the second story roof where it would be more accessible to patients and also provide better window views. This raised concerns with the structural force concentration on the second story. The added weight of the green roof would require either the upsizing of columns or the addition of shear walls. Ultimately, this would be a call made by the owner.

ACKNOWLEDGEMENTS

Orange Regional Medical Center

Special thanks to Jonathan Schiller, Chief Operating Officer and John King, Facilities Engineer for connecting me with my thesis topic and supporting me throughout the year. I know how busy everyone at ORMC was during to move to the new hospital so I can't begin to express my level of appreciation.

Architectural Engineering Faculty

Thank you for all of the wisdom you have shared over these five years.

Special thanks to Dr. Hanagan for your support and guidance not only during thesis, but through the past couple years. You've taught us more than how to engineer a steel structure; you've taught us life lessons.

Family

Thank you to my parents for sacrificing so much so I could pursue my dreams at Penn State. Your love and support over these five years is what got me through it all.

Friends

A special thanks to Rebecca Dick, Brian Rose, Mike Kostick, Christina DiPaolo, and Caitlin Behm. You've been life savers through all of our classes.

There have been so many good times over these past couple years, and I'm sure there will be many more.

INTRODUCTION

Built with the future in mind, the new Orange Regional Medical Center (ORMC) set to unite ORMC and its branch campus at one new location in Middletown, NY. Not only does this 600,000 square foot hospital provide enough space for the merging of these two locations, but it was also designed to allow for future expansion. From the second story and up, the floor plan was architecturally designed in the

shape of a medical cross. This design allows for medical departments to branch off of a central elevator core for easy circulation. In addition, this design will provide seamless building expansion. Currently, the top two floors of this medical cross floor plan are missing two legs of the cross. This provides space for future additions as the community grows over the lifetime of the building. Figure 1 shows the rooftop voids where future additions will be constructed. It is important to note that the analysis and design in this report account for these future additions, and treat the hospital as a 722,000 square foot structure.

Figure 1: Location of Future Additions

Figure 2: Patient Rooms

Patient and employee comfort was a primary concern in the design of the new hospital. This is not only evident in the finishing touches, but in numerous design features of the building as well. ORMC features patient rooms that rival the rooms of hotels (Figure 2). Carpeting was also installed throughout all hallways of ORMC to provide a quieter atmosphere for recovering patients and diligent employees. This is all based around studies showing that patients are quicker to recover in comfortable, quieter spaces.

Finished in April 2011, Orange Regional Medical Center is comprised of six stories above grade and one partially below, which create a height of 97.5 feet from ground floor. The first floor is significantly larger in square footage than the upper five floors, allowing for major medical departments, such as the Emergency and Operating Rooms, to be readily accessible to incoming patients. The overall design of ORMC is one that has been used before by the design and construction company, HBE. In fact, the one architectural feature setting this hospital apart from HBE's other designs is the cathedral ceilinged lobby, which features gift and coffee shops for the visitors of Orange Regional Medical Center.

EXISTING STRUCUTRAL SYSTEM

Foundations

The foundations are determined from recommendations of the geotechnical report by Melick-Tully and Associates. Square, concrete spread footings are set on virgin soil or engineered, compacted soil with a bearing stress of 4000 psi. Of all 351 columns, 167 carry load down to footings at the first story level, where the rest are carried down to the ground floor level.

Floor System

Out of the Vulcraft catalog, the existing floor system of ORMC consists primarily of 2VLI20 composite deck with 3¼" of light weight concrete, making for a total floor thickness of 5¼". The decking runs three spans, perpendicular to the joists, where typical spans are in the range of 7'4". However, the decking may see longer spans due to the lack of bay size uniformity.

Gravity System

The existing composite steel frame of this structure comes in a variety of sizes. On the first floor alone, there are a total of twelve different wide flange composite beams used, but in general, W16x26's and W16x31's serve as the primary beams throughout the building with an average spacing of about 7 feet and an average span of about 26 feet, as shown in the typical bay in *Figure 3*. W18x35's and W21x44's are the most common choice for girders with spans ranging between 14' 8" and 27' 1". This size dispersion also follows the load path to the columns. A majority of the columns are W12's with a small grouping of W10's and W8's. As mentioned earlier, structural columns for the future additions are also shown on the column schedule. Traveling up the building, the columns continue to carry

Figure 3: Typical Bay

less of the building load and therefore, reduce in size. Typically, each column has two splices occurring just above the second and fourth floors. However, there are special cases where splices occur on the third and fifth floors instead. The structural notes specify that all splice connections must be slip critical connections. Looking further into the frame connections, steel beam connections are detailed as simple span beams, with the a few exceptions. There are only a handful of moment frames specified throughout the building which must be considered as continuous beams.

Lateral System

To resist the lateral forces from wind and seismic activity, the structure utilizes concrete shear walls on the ground level. These shear walls only extend up to the first floor. From the first floor and above, the lateral forces are then resisted by forty-eight eccentrically braced steel frames and two concentrically braced frames. These braced frames are present in varying heights. A majority of the braced frames fall within the exterior walls, so those frames around the perimeter of the first floor typically end at the second story. A number of braced frames continue up to the roof and resist lateral loading in each of the legs of the cross shape floor plan, as shown in *Figures 4 and 5*.

Figure 4: Braced Frames Location

GENERAL STRUCTURAL INFORMATION

In the original analysis of the steel structure, the primary codes considered through the calculations were ASCE7-10 and AISC-14th Edition. ASCE was used for determining Live, Snow, and Lateral Loadings, where the Main Wind Force Resisting System (MWFRS) and Equivalent Lateral Force Method (ELF) were used for Wind and Earthquake analysis, respectively. In the redesign, ASCE7-10 is still used for Live, Snow, and Lateral loadings (MWFRS for wind and ELF for seismic). However, AISC is switched for ACI318-08 in the design of the concrete frame.

Materials and Standards

Existing Steel Structure

a.	W's and WT's	ASTM A992
b.	Plates and other shapes	ASTM A36
c.	HSS	ASTM A500, Grade B
d.	Pipe	ASTM A53, Grade B
e.	Bolts	ASTM A325, or F1852 where indicated
f.	Anchor Rods	ASTM F1554, Grade 36
g.	Threaded Rod	ASTM A36
h.	Headed Studs	AWS D1.1, Type B

Redesigned Structure

a.	Concrete	f'c (psi)	Unit Weight (pcf)	
	Columns, Slabs, Drops	4,000	150	
	Shear Walls	6,000	150	
b.	Reinforcement	ASTM A-615, Grade 60)	

THESIS OBJECTIVE

Problem Statement

As noted earlier, the existing system requires fifty lateral braced frames to control the story drifts in each leg of the cross-shape floor plan. Each of these frames requires an increased level of attention to ensure proper lateral performance. For instance, the heavy bracing connections must be properly designed to prevent moment at the connection joint. The link of the eccentric braced frames also requires stiffeners to avoid local buckling. All these details call for site inspections, which increase cost and length of construction. Additionally, many of these braced frames tie into shear walls at the first story. Again, these connections become difficult to ensure the proper transfer of later loads and to ensure that the braced frames will be plumb. With this in mind, Orange Regional Medical Center was also working on a limited budget, and therefore, any alternative system would need to be cost effective. The use of braced frames also brought about architectural concerns. When the building opened in 2011, many occupants disliked the braces running through the windows, and since a majority of these frames run along the perimeter of the building, this was the case for most window openings.

Structural Depth - Problem Solution

Given the spans between columns, a flat slab, concrete system would be an effective method against loading from gravity. In fact, the flat slab system is a common system amongst hospitals for numerous reasons. For one, concrete systems typically perform well under vibration, which is a potential issue with hospital equipment. This would also allow for easier connections than the steel braced frames and the connections to the shear walls since everything is cast integrally. These systems also provide space to run mechanical equipment between drop panels. This is especially beneficial, given that hospitals typically require more mechanical systems to provide infection control.

A concrete flat slab, if designed correctly, would also be effective against lateral loads. Essentially, concrete structures provide moment frames for free. This would eliminate the need for braced frames around the perimeter of the structure, allowing for a very flexible floor plan and façade. These are the reasons that the flat slab system was found to be a viable system in Technical Report 2. In addition, that report estimated that the flat slab system would be less expensive than the existing steel structure. The concrete frames would not require any additional fire proofing, and it would also eliminate the need for steel inspectors on site, but a more detailed estimate would have to be made to confirm whether the new system would fall within ORMC's budget.

Using the existing column locations, the wide flange columns will be replaced with square concrete columns. The goal is to completely design the structure for gravity and lateral loading using solely the concrete moment frames. The columns and slab will have to withstand both shear and moment forces produced by the controlling load combination. If it is found that shear walls are necessary to control lateral behavior, they will be placed in the appropriate locations. This should still produce a flexible floor plan, given that there would be far fewer shear walls than braced frames. Technical Report 2 also found the flat slab system to weigh less than the existing steel system. This will have to be confirmed since concrete structures are typically heavier than those of steel. If the system is found to be heavier, this will increase the seismic lateral forces and the gravity loading on the foundation. These changes would be accounted for in the redesign.

Breadth Topic 1 – Cost and Schedule Analysis

An ideal redesign will be less expensive than the existing system, especially since budget was a crucial part of ORMC's decisions. Although an initial estimate from Technical report 2 found the flat system to be more cost effective, a more detailed cost analysis will have to be carried out using RS Means in order to accurately make comparisons with the existing system. This change to a concrete system will also have impacts on the construction schedule. Typically, concrete construction is longer than what we would expect from steel construction. The purpose of this analysis would be to determine how much the critical path would be affected by changing the structural material.

Breadth Topic 2 – Architectural Redesign

After having some time to work at Orange Regional's new location, the employees have voiced concerns regarding the architectural layout of many of the medical departments. This redesign resolves those concerns by fully rearranging the architectural floor plans in a way that's conducive to the medical flow of patients and staff. This redesign also seeks to better achieve the hospital's initial goal of patient comfort. This includes minor architectural details as well as exploration into the use of green roofs.

BUILDING LOADS

Dead Loads

Typical Floor Loading					
Component	Weight (psf)				
Concrete	125.00				
MEP & Misc.	20.00				
	145.00				
Roof Load	ling				
Component	Weight (psf)				
Concrete	125.00				
Rigid Insulation	2.00				
MEP & Misc.	20				
Snow	28				
Snow (30% Seismic)	8.4				
	155.40				

The dead loading on the floors is derived from knowledge of material weights and educated estimates. These loadings include self-weight and MEP loading on the floor level, with the exception of the ground floor, which will not have an MEP load. The roof loading consists of self-weight, insulation, and MEP. This is shown in *Table 1* to the left.

Table 1: Floor Dead Loading

Live Loads

Typical Live Loading					
Component	Weight (psf)				
Operating Rms, Labs	60				
Patient Rooms	40				
Corridors Above 1 st	80				
Corridor 1 st Floor	100				
Lobby	100				
Dining Area	100				
Offices	50				
Roof	20				

Table 2: Floor Live Loading

Design live loads were taken right from the structural drawings provided by HBE to develop an accurate comparison. Throughout the design process, the live load is taken as 100 psf everywhere. This is due to the fact that corridors run through a majority of the bays, and since this is the controlling load, this determines the necessary slab thickness necessary over the entire floor. The various live loads throughout the building are shown in *Table 2* to the left.

Snow Loads

From ASCE7-10, the ground snow load for the building location is found to be 50 psf. This translates to a 42 psf flat snow load on the roof. ACE7-10 also states that for seismic, the snow load is to be taken as twenty percent of flat snow load, meaning that only 8.4 psf is considered toward calculating building weight. Detailed snow load calculations can be found in Appendix A.

Wind Loads

With the redesign from the steel structure to a concrete structure, the geometry of the building remains the same, and since wind loading is dependent on geometry, the loads also remain the same for both types of construction. Therefore, for both structures, MWFRS is applied to determine the wind pressures at each story (shown in *Tables 3 & 4* and *Figures 7 & 8*). From this method, the basic wind design speed for Middletown, NY is 120 mph with an exposure C category. The shape of the hospital was simplified to the shape in *Figure 6* during analysis to provide general wind pressures.

Multiple wind load cases, in *Figure 9*, are applied to the structure to account for directionality and torsional effects of wind. These loads are applied to an ETABS model to determine the story drifts, which follow later in this report. As mentioned earlier, the wind loading has not changed with the redesign, and since seismic was the predominant load in the existing steel structure, wind will continue to be the lesser load as the seismic load increases in the concrete structure. For this reason, load cases with seismic will always control over cases with wind. For detailed wind calculations, refer to Appendix B.

	Wind Pressures - North/South									
Floor	Z	Kz	qz	p _{Windward} (psf)	WW (plf)	WW (k)	q _h	p _{Leeward} (psf)	LW (plf)	LW (k)
Ground	0	0.85	26.63	18.6	148.5	72.5	39.32	-16.1	-128.5	-62.7
1	16	0.86	26.95	18.8	300.4	146.6	39.32	-16.1	-257.0	-125.4
2	32	0.99	31.08	21.7	314.1	153.3	39.32	-16.1	-232.9	-113.7
3	45	1.07	33.37	23.3	302.3	108.5	39.32	-16.4	-213.7	-76.7
4	58	1.12	35.16	24.5	318.5	114.3	39.32	-16.4	-213.7	-76.7
5	71	1.17	36.79	25.6	333.2	119.6	39.32	-16.4	-213.7	-76.7
6	84	1.22	38.29	26.7	353.5	126.9	39.32	-16.4	-217.8	-78.2
Roof	97.5	1.26	39.32	27.4	185.0	66.4	39.32	-16.4	-111.0	-39.8

Table 3: North/South Wind Pressure

	Wind Pressures - East/West									
Floor	Z	Kz	q _z	p _{Windward} (psf)	WW (plf)	WW (k)	<mark>q</mark> ь	p _{Leeward} (psf)	LW (plf)	LW (k)
Ground	0	0.85	26.63	18.4	147.4	84.3	39.32	-16.5	-132.3	-75.6
1	16	0.86	26.95	18.6	298.4	170.5	39.32	-16.5	-264.6	-151.2
2	32	0.99	31.08	21.5	311.9	178.2	39.32	-16.5	-239.8	-137.0
3	45	1.07	33.37	23.1	300.2	119.0	39.32	-17.0	-221.1	-87.7
4	58	1.12	35.16	24.3	316.3	125.4	39.32	-17.0	-221.1	-87.7
5	71	1.17	36.79	25.5	330.9	131.2	39.32	-17.0	-221.1	-87.7
6	84	1.22	38.29	26.5	351.1	139.2	39.32	-17.0	-225.4	-89.4
Roof	97.5	1.26	39.32	27.2	183.7	72.8	39.32	-17.0	-114.8	-45.5

Table 4: East/West Wind Pressure

Figure 7: North/ South Wind Pressure

Seismic Loads

Equivalent Lateral Force Method from ASCE7-10 is used to determine story shears from seismic loading. Essentially, the only part of the calculations that change when redesigning the structure from steel to concrete is the R factor and the building weight. For the redesigned concrete structure, the R factor remains at 3 for a "dual system with intermediate moment frames capable of resisting at least 25% of prescribed seismic forces." This system utilizes the intermediate moment frames at every column with the addition of ordinarily reinforced concrete shear walls around the elevator shafts. ACI318-08 describes the requirements for creating an intermediate moment frame, which involves the detailing of reinforcement. These include the use of spiral ties and placement of slab reinforcement as seen in Figure 10. One thing that does change in the redesign was the building weight. Tables 5 and 6 show the loading for seismic and the total building weight calculation. From these tables, it is found that the total weight of a concrete structure is 48,000 kips heavier, contrary to the expectedly lighter structure from Technical Report 2. This is a significant increase, considering that it's almost double the weight of the existing steel structure. Story shears become much higher from this increase in weight, especially since the R factor did not increase. The calculations result in a base shear of 8,394 kips (shown in Table 7), which is almost twice that of the existing steel structure. Figure 11 shows how this base shear is distributed to each story. For further seismic calculations, see Appendix C.

Floor Loading						
Floor	SF	Loading (psf)	Floor Weight (k)			
Ground	95676	125.0	11960			
1	172144	145.0	24961			
2	100167	145.0	14524			
3	68865	145.0	9985			
4	68865	145.0	9985			
5	68865	145.0	9985			
6	68865	145.0	9985			
Roof	68865	155.4	10702			
			102088			
	Faça	ade Loading				
Floor	Perimeter	Height	Weight on Floor			
Floor Ground	Perimeter 1308	Height 8.00	Weight on Floor 398			
Floor Ground 1	Perimeter 1308 1681	Height 8.00 14.50	Weight on Floor 398 926			
Floor Ground 1 2	Perimeter 1308 1681 1276	Height 8.00 14.50 13.00	Weight on Floor 398 926 630			
Floor Ground 1 2 3	Perimeter 1308 1681 1276 1102	Height 8.00 14.50 13.00 13.00	Weight on Floor 398 926 630 544			
Floor Ground 1 2 3 4	Perimeter 1308 1681 1276 1102 1102	Height 8.00 14.50 13.00 13.00 13.00	Weight on Floor 398 926 630 544 544			
Floor Ground 1 2 3 4 5	Perimeter 1308 1681 1276 1102 1102 1102	Height 8.00 14.50 13.00 13.00 13.00 13.00 13.00	Weight on Floor 398 926 630 544 544 544			
Floor Ground 1 2 3 4 5 6	Perimeter 1308 1681 1276 1102 1102 1102 1102	Height 8.00 14.50 13.00 13.00 13.00 13.00 13.00 13.25	Weight on Floor 398 926 630 544 544 544 544 555			
Floor Ground 1 2 3 4 5 5 6 Roof	Perimeter 1308 1681 1276 1102 1102 1102 1102 1102 1102	Height 8.00 14.50 13.00 13.00 13.00 13.00 13.25 6.75	Weight on Floor 398 926 630 544 544 544 555 283			
Floor Ground 1 2 3 4 5 6 7 8 0 6 Roof	Perimeter 1308 1681 1276 1102 1102 1102 1102 1102	Height 8.00 14.50 13.00 13.00 13.00 13.00 13.25 6.75	Weight on Floor 398 926 630 544 544 544 555 283 4424			
Floor Ground 1 2 3 4 5 6 8 0 6 Roof	Perimeter 1308 1681 1276 1102 1102 1102 1102 1102	Height 8.00 14.50 13.00 13.00 13.00 13.25 6.75 Floor Load	Weight on Floor 398 926 630 544 544 544 555 283 283 4424 102088			

Typical Floor Loading					
Component	Weight (psf)				
Concrete	125.00				
MEP & Misc.	20.00				
	145.00				
Roof Loading					
	0				
Component	Weight (psf)				
Component Concrete	Weight (psf) 125.00				
Component Concrete Rigid Insulation	Weight (psf) 125.00 2.00				
Component Concrete Rigid Insulation MEP & Misc.	Weight (psf) 125.00 2.00 20				
Component Concrete Rigid Insulation MEP & Misc. Snow (20% Seismic)	Weight (psf) 125.00 2.00 20 8.4				

Above – Table 6: Seismic Floor Loading Below - Figure 10: Intermediate Frame Slab Detailing (ACI318-08)

Seismic Loads								
Floor	Weight (k)	Height (ft)	w _x h _x ^k	C _{vx}	F _x (k)	V _x (k)	M (ft-k)	
Roof	6008	97.5	1758311	0.158	1327	1327	129425	
6	10529	84	2561495	0.230	1934	3261	162439	
5	10529	71	2079445	0.187	1570	4831	111461	
4	10529	58	1618221	0.146	1222	6053	70857	
3	10529	45	1181328	0.106	892	6945	40133	
2	15154	32	1114072	0.100	841	7786	26914	
1	25887	16	805732	0.072	608	8394	9733	
Ground			11118604		8394		550963	

Table 7: Story Shear Distribution

Overturning Moment and Foundations

Overturning Moments							
Floor	Earthquake	Wind E/W	Wind N/S				
Roof	129425	7101	6474				
6	162439	11693	10661				
5	111461	9316	8494				
4	70857	7273	6631				
3	40133	5356	4883				
2	26914	5704	4904				
1	9733	2728	2346				
Ground	550963	49173	44393				

Table 8: Wind & Seismic Overturning Moments

Table 8 illustrates the overturning moment from wind and seismic. The seismic moment is twice that of steel, but the column to foundation reinforcement is detailed as to create a pin connection at that interface. Therefore, moment is not carried in the foundations. In that case, the foundations only take the axial load of the building. To stay under the 4000 psi max soil bearing stress, this requires minimum 76 in² spread footings.

GRAVITY REDESIGN

Slab and Drop Panel Design

By fully understanding the previous load conditions, it becomes evident that the flat slab system could effectively meet the design criteria. To establish preliminary sizes for the slab and drop panels, the CRSI Design Handbook was used for the critical conditions. Using a superimposed load of 120 psf pushes the design load to 200 psf in the handbook. After taking an initial guess of a 10 inch slab, and comparing that with the largest bay spans of 30 feet, the controlling slab system could be determined. These criteria produce 10 foot width by 8.25 inch depth drop panels. The next step was to create a more detailed slab design using actual loads in spSlab. Using this program, a typical column line was designed through the building (shown in Figure 12) to determine reinforcement, deflections, shear and moment capacities. All shear and moment fell within the slab's limitations, and the resulting reinforcement for middle and column strips is shown in Figures 14 and 15 respectively. The reinforcement in these details is considered to control over those provided by CRSI since spSlab also accounts for moment from lateral load. One may also note that the reinforcement in Figures 14 and 15 have continuous bars running in the top of the slab. This is due to the loading on various span lengths causing other spans to have a reversal of forces and experience tension in the top face of the slab. The largest live load deflection found in the slab is 0.165 inches, which is much less than 0.878 inches for L/360. The same goes for total deflection of 0.284, which was much less than 1.317 (L/240).

Figure 13: Plan View of Typical Column Line

	· ·
°(0.5F5)5₩.55	
o(0.205)8#-7- -(5.205)8#-25 (4.121)8#-7	
o(0.971)2#-SE	->(0.971)2#-61
ە(0، <u>205)</u> 11-46(202,0) 11-46(202,0)	
o(0.8505#.11- (0.8505#.05 (1.061)2#-11-	>(0'926)9#-9Z
>(0.80; <u>(4.4%);2#-01−</u> >(0.80; <u>12;4</u> 7; <u>73#-01−</u>	einforcemen
- <u>5-#5(703+5)</u> (2610)o 	Flexural R
o(0.255,7 <u>60</u> 1) <u>24-</u> 2- (8.76)24-2- (8.76)24-4-	umn 223.#6(266.0)o- trip
ə(0.2 82.(8,301)2¥.2 —	23-#5(265.0)
o(0.135 <u>(€;≭01)2#-8</u> (3.192 <u>8+8</u> (3.1928+8	23.#5(261.0)
°(0.5 82,54,≩%-8	
o(0.95cr)2#-9r	0(0.6) 5%-62
>(0.5 (8)200 5 %,8 ——	
>(0,원국한,435,01 (8,49)2₩-34-0)- (8,4,8)2	-•(0.872)∂ # 4⁄2
>(0.0 <u>85,24</u> ,3 <u>54,</u> -7	

Reinforcement
Flexural
Strip
Middle
14:
Figure

o(0.815)2#-01	(0.852)2#-11
-12-#6(71.5) -12-#6(71.5) -12-#6(71.5)	>(0.20E)2#-01 >(7.952)2#-9
0(0.971)2#-E1 (8.54)2#-1	~(0.971)2 % -E1
(8.47)∂ 4 .8 o(0.205)∂4.01 (∂.17)∂4.4	-(0.525)3#-7 ->(0.525)3#-7
(∂.87)∂#-8— o(0.855)∂#-01— (∂.87)∂#-8—	-(0.325)2#-01 (0.722)2#-7
(0.47)2#-8 >(0.80£)2#-01 (0.47)2#-8	-(0.806)2#-01 -(0.212)2#-7
	-0(0.182)8#.11 -(7.871)8#.5
-2-#5(64.5) -2-#5(64.5) -2-#5(64.5)	
-3-#5(64.5) -3-#5(64.5) 	->(0.285)2#-11 -(2.281)2#-1
	->(0.182)8#-11 -(7.871)8#4
-2-#5(63.9) -2-#5(53.3) -2-#5(53.3)	
(8.18)24-8 o(0.945)24-01	->(0.9+5)2#-01 -(5.442)2#-6
(3.09)24.25 o(0.252)34.11 (8.26)24.25	
(S. 88)24-8- o(0.872)24-11- (S. 88)24-2-	-(0.812)2#-11 -(0.861)2#-2
ə(0.03S)Ə#-11 (0.03)Ə#-8	

Orange Regional Medical Center

Column Design

The next step in the gravity analysis was to determine the load relationship between the exterior and interior columns. From pure axial calculations it was determined that the façade load makes up for the lower tributary area of an exterior column so that the interior and exterior columns are essentially the same size. In addition, it was also found that CRSI called for larger column sections in each case, so these were still chosen as the controlling design. This process is shown in further detail in Appendix D. From here, the columns were modeled in spColumn and designing became an iterative process between the two programs and spot checks by hand calculation (shown in Appendix H). In general, pure gravity loading did not control the size of the columns. Rather, it was a combination of gravity and lateral loads under the load case 5,

1.2D + 1.0E + L + 0.2S from ASCE7-10 that determined the size of the columns.

LATERAL REDESIGN

Slab and Drop Panel Design

To start the lateral design, portal method was performed by hand through the column line mentioned earlier in *Figure 12* (hand calculations in Appendix G). By applying the new seismic loads mentioned earlier in this report, the moment in the slabs could be determined and then applied in spSlab. In turn, this designed the reinforcement displayed in the gravity section. With the increased load from lateral, the slab thickness was increased to 11 inches to help transfer lateral moment.

Column Design

Starting with the columns designed for pure axial, the preliminary sizes were plugged into spColumn with the moments from the portal method. This became an iterative process of increasing the column cross section until a column size could pass and deliver reinforcement design. The new column sizes were then plugged into ETABS and exposed to seismic loading in both the North/South and East/West directions. At this point, the primary concern was controlling story drifts. Again this became an iterative process between spColumn and ETABS until drifts fell within the acceptable limit, which will be illustrated later in the report.

Although all floors met the drift criteria, the columns were still failing due to concentrated moment at the second story. This is due to the drop in square footage at the second story (illustrated by *Figure 16*) because the story shear from seismic is only carried by 156 columns at the second floor as compared to 351 at the first floor.

Figure 16: Floor Plan Reduction at Second Story

Interestingly enough, simply increasing the column cross section wouldn't fix the problem. Instead, since an increased cross section also means increased stiffness, these columns only continued to take more load to the point of failure. To help take some of the forces at the second story, it was determined that the installation of shear walls would be the most effective method. Once the second story forces were being distributed effectively, drift values were still high at the administration wing of the building, which is the section of purple columns in the figure below. This is due to the fact that torsion is the first mode of the building. Since this "arm" is the only asymmetric piece of the floor plan and also furthest from the center of rigidity, it experiences the highest displacements. To account for this, these bays required increased stiffness, and therefore larger cross section than other comparable columns. The final column layout can be seen in *Figure 17* on the second story floor plan below.

Shear Wall Design

Given the huge spike in moment at the second story, the most cost effective solution to keep the columns from failing was to add stiffness in the form of shear walls. To actually withstand the concentration of moment at the second story, 156 columns would have had to be made larger than 36x36 columns. Considering the other stories of these columns saw very little moment, it would not be the best design decision to upsize the entire section. Therefore, it was deemed the best solution to construct 18" thick, 6000 psi shear walls around the elevator shafts, which wouldn't interfere with the architectural layout. Refer to *Figure 18* for the shear wall layout. The addition of shear walls then changed the lateral resistance system to a dual system, which also had an R of 3. To meet the criteria of this system, however, the moment frames were still required to carry at least 25% of the lateral force. A relative stiffness check, shown in *Table 9*, was then carried out to verify this criterion. A spot check of the shear walls can be found in Appendix H.

Relative Stiffness			
North/South	North/South Direction		
А	0.144		
В	0.155		
	29.90%		
East/West	Direction		
D	0.077		
D C	0.077 0.055		
D C F	0.077 0.055 0.067		
D C F E	0.077 0.055 0.067 0.057		

 Table 9: Shear Wall Relative

 Stiffness

Story Drifts

Drift analysis is a true test of the lateral effectiveness of a system. Design for drift is crucial to prevent damage to the structure or façade of a building. For wind, drift values should be less that L/400, and for seismic drift, the values for an occupancy category IV should fall underneath $0.01h_{sx}$. *Tables 10 and 11* show the ETABS story drifts compared to the accepted values. All drifts for both wind and seismic fall within the acceptable limits for this structure.

	Seismic Story Drifts							
Story	Load	hsx	ETABS Drift X	ETABS Drift Y	Drift X (in)	Drift Y (in)	Allowable	Pass?
Roof	EQx	162	0.004541	0.001415	1.23	0.38	1.62	Yes
Roof	EQy	162	0.001369	0.002426	0.37	0.66	1.62	Yes
6	EQx	156	0.004993	0.001664	1.30	0.43	1.56	Yes
6	EQy	156	0.001628	0.00286	0.42	0.74	1.56	Yes
5	EQx	156	0.005257	0.001855	1.37	0.48	1.56	Yes
5	EQy	156	0.001821	0.003191	0.47	0.83	1.56	Yes
4	EQx	156	0.005039	0.001755	1.31	0.46	1.56	Yes
4	EQy	156	0.00172	0.003134	0.45	0.81	1.56	Yes
3	EQx	156	0.00576	0.00149	1.50	0.39	1.56	Yes
3	EQy	156	0.002393	0.002678	0.62	0.70	1.56	Yes
2	EQx	156	0.005363	0.002279	1.39	0.59	1.56	Yes
2	EQy	156	0.001512	0.002283	0.39	0.59	1.56	Yes

Table 10: Seismic Drifts

WIND STORY DRIFTS					
STORY	ETABS DriftX	ETABS DriftY	DRIFT	ALLOWABLE	PASS?
7	0.000514		0.083	0.405	Yes
7		0.000415	0.067	0.405	Yes
6	0.000624		0.101	0.39	Yes
6		0.0005	0.081	0.39	Yes
5	0.000722		0.117	0.39	Yes
5		0.000579	0.094	0.39	Yes
4	0.000714		0.116	0.39	Yes
4		0.000591	0.096	0.39	Yes
3	0.000715		0.116	0.39	Yes
3		0.000532	0.086	0.39	Yes
2	0.000796		0.129	0.48	Yes
2		0.000582	0.094	0.48	Yes

Table 11: Wind Drifts

ETABS MODEL

ETABS has served as an effective tool for moment frame design. By continuously checking results with hand calculations and other computer programs, one can arrive at very accurate results. There are some assumptions and decisions in modeling worth noting in relation to the analysis and design of the concrete flat slab system. For one, the columns that don't run all the way down to the ground floor are modeled as pinned supports at the first story, which is why there are no drift results at story one. Essentially, the first story is braced against lateral deflection by the 16' of soil between the ground and first floor. All concrete elements also account for cracking with columns using 0.7 lg, beams using 0.35 lg, and slabs using 0.25lg. Thirdly, each individual bay is modeled as a shell element to account for the

lateral moments carried into the slab. One final note is the assumption of a 5% accidental eccentricity when applying a seismic load. *Figures 19* illustrates the modeling of the redesigned system.

BREADTH TOPIC 1 - COST AND SCHEDULE

Cost Analysis

A preliminary study in Technical report 2 priced the flat slab system at a lower price than the existing steel structure. If this is the case, the flat slab system could be considered as an viable alternative to the steel construction. Cost is especially crucial in the design by ORMC. The hospital was given a specific budget with little to no variance. The detailed steel cost estimate, using RS Means, included the costs of columns and beams, fireproofing for the steel, floor decking, shear studs, and concrete floor slab. The total estimated cost came to \$10,810,000, which is about 5% of the total building cost. Table 12 illustrates an overview of this analysis. For more detailed cost information, refer to Appendix E.

Steel System Costs			
ltem	Quantity	Unit	Total
Columns & Beams	122771	L.F.	7032700
Metal Decking	823310	S.F.	1893613
Concrete	8259	C.Y.	187892
Shear Studs	130361	Ea.	243775
Fireproofing	946081.09	S.F.	1455160
			10813141

 Table 12: Steel Construction Costs

The redesigned flat slab system includes costs of columns, shear walls, flat slab and drop panels. With the cost of the concrete, reinforcement, placing, formwork, and finishing is included in the RS Means price. The total price of the system is estimated at \$20,120,000 which is about 8% of the total building cost and almost double the cost of the steel structure. Of course there are still miscellaneous items that have not been accounted for in both systems such as steel connections for the existing system and the cost of freeze add mixtures in the concrete system, since construction spans over the winter months. Even without these additions however, this cost analysis gives a pretty good idea that the concrete flat slab system would be significantly more expensive, contrary to the estimate from the Technical Report 2. This alone would probably be enough to turn ORMC away from this system. An overview of these costs are outlined in Table 13, but for further detailed costs, refer to Appendix F.

Concrete System Costs			
Item	Quantity	Unit	Total
Columns	12682	C.Y.	5398917
Slab & Drops	31840.3	C.Y.	14504849
Shear Wall	-	-	219227
			20122993

Table 13	: Concrete	Construction
----------	------------	--------------

Construction Schedule

A second important piece in choosing a structural system is the length of time required for construction. As the saying goes, "time is money," and most owners entering the construction phase, seek to complete the building as quick as possible, as cheap as possible while also maintaining a standard of quality. From the existing construction schedule provided by Orange Regional Medical Center, it is shown that construction for the entire steel structure spanned over 15 months and 9 days. This schedule can be found in Appendix F. By using the labor daily output values from RSMeans, a construction schedule was also derived for the concrete flat slab system. On a side note, for the comparison of schedules, this analysis only considers the scope of the structure timeline. Realistically, other trades would also be carried out during this time, but that will be outside of the purposes of this report.

An accurate construction schedule will have tasks overlap so that multiple projects are being carried out at the same time. This piece of the schedule required some assumptions as to how soon a slab could be started after the columns are finished. In most cases, the slab was started a couple weeks before the columns would reach their 28-day strength. This allowed time for formwork and rebar to be set before placing concrete for the slabs and loading the columns below. It was also determined that the slab for the first floor could be started on the same date as the columns on the ground floor since parts of the first story does not have the columns supporting. This is due to the ground level being partially below grade, and a smaller square footage than the first story. This same concept carries over to the drop in square footage at the second story; the second story columns can be started early into the second floor slab construction, given that much of the second story slab is roof. At the completion of the analysis in Microsoft Project, it was found that the concrete system will take 6 weeks longer to construct than the existing steel system. This is expected of a concrete structure, but ultimately this would the decision of the owner as to how critical the 6 weeks is. *Figure 20* shows the schedule of the various flat slab tasks.

BREADTH TOPIC 2 - ARCHITECTURAL REDESIGN

Medical Department Layout

When designing an architectural floor plan, there are so many criteria to keep in mind that some other areas may be overlooked. Near the top of that list however, is functionality for the building occupants. HBE has achieved a very functional layout for patients and employees, but even still there are areas that could benefit from a second look. The original design had to be rotated 90 degrees from its intended position due to site issues. This is something the architects could not have anticipated, and as a result, the emergency room entrance is located on the opposite corner of the site from the main entrance (shown *in Figure 21*). The current design causes confusion in what is often a frantic situation. For this reason, the redesign will focus on moving the emergency room to a location closer to the main entrance.

Figure 21: E.R. Entrance vs. Main Highway Entrance

Now looking inside the building, it is always important to think about the flow of patients and employees. Three particular departments that should always be close to one another are the Emergency Room, Operating Room, and the Intensive Care Unit. If a patient needs to be rushed to either of these departments, time shouldn't be wasted having to wait for the elevator. As a result, the redesign moves the Intensive Care Unit (ICU) down to the first story, where it neighbors the Emergency Room (ER) and Operating Room (OR). To achieve this relocation, departments on the first floor that don't require patient or employee urgency are moved up to the third floor where ICU was originally located. Therefore, the redesign is able to achieve a more logical flow by only changing the first and third floor layouts. During the redesign, all departments maintained roughly the same square footage while attempting to work around the existing circulatory space. The administrative departments were left in the same location since this section of the building follows separate fire codes. *Figures 23 through 25* on the next pages show the original and redesigned floor plans of the first and third floors.

Figure 24: Original Department Layout – Story 3

Figure 25: Redesigned Department Layout – Story 3

Green Roof Addition

Figure 26: Healing Garden

As mentioned earlier in the report, ORMC strived for patient comfort and quick recovery. Along with the hotel-like patient rooms and carpeted hallways mentioned earlier, ORMC also planted a healing garden, shown in *Figure 26*, next to the lobby entrance. Although this is a great amenity, it doesn't get used as often as it would if it was located where the patients are actually healing. Since the patient rooms are all on the second story and above, why not move the healing garden to the second story roof and make it patient accessible. Currently, the patient rooms look out onto a gravel roof with mechanical rooms and pipes jutting out of the roofing. This seems like a waste, considering that ORMC made it a point to design higher quality rooms, but yet, the rooms have an eyesore right outside the window. Placing a green roof on the second story will allow all patient rooms to look down on a beautiful garden, therefore providing further comfort. In addition, there is the added bonus of thermal properties that go along with a green roof as well as extended life of the roof.

The proposed location can be seen in Figure 27, highlighted in green, with the existing location highlighted in yellow. This would allow patients from Oncology, Respiratory Therapy, Progressive Care Unit, Intensive Care Unit, Physical and Occupational Therapy, Medical/Surgical Units, and the Maternity

to have views of the garden from their rooms. The relocation also has its disadvantages, however. Looking at the green roof from a structural prospective raises some concerns. As mentioned in the structural depth study, all of the full height columns had to be upsized to account for the concentration of moment forces at the second story. Since green roofs are typically heavy systems, this would add further shear at the second story level due to seismic forces. Essentially, the addition of a green roof would be a nice feature,

Figure 27: New Garden Location

especially since it would be more accessible to the patients, but with the added costs of the green roof alone and any structural retrofitting, it would ultimately be a decision made by the owner. The owner would determine the value of such a garden in light of the structural consequences.

${\tt CONCLUSIONS}$

Given the various loads that act on this hospital, it was found that a concrete flat slab system would be capable of withstanding the predominant seismic load. However, geometry of the structure created force concentration at the second story which would require the addition of shear walls around the elevator shafts. This addition allows the structure to fall within all acceptable limits. The structure cannot be based solely on structural criteria, however. After analyzing cost and construction schedule of the redesigned system, it was found that a flat slab may not be the best method for Orange Regional Medical Center. The cost of the new structure came in at almost twice the original cost which is simply something that ORMC cannot consider on a limited budget. There was also an urgency to move into the new hospital, so a longer schedule would also be a downside especially when anticipating delays from a constructing a concrete system during the winter months. On the other hand, there are architectural changes that could have been done in the original structure that carry many benefits with them. Patient and employee flow and comfort are always of the utmost importance, and the new layout of departments and green roofs would achieve this. But overall, analysis shows that the existing composite steel structure with braced frames is the better solution for the needs of Orange Regional Medical Center.

REFERENCES

ASCE7-10. Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers 2010.

ACI 318-08. Farmington Hills, MI: American Concrete Institute, 2009.

CRSI Design Handbook 10th Edition. Concrete Reinforcing Steel Institute, 2008.

Fanella, David, Concrete Floor Systems Guide to Estimating and Economizing Second Edition. Portland Cement Association.

RSMeans Building Construction Cost Data. 70th ed. R.S. Means, 2012. 130-31. Print.

Wight, James and James MacGregor, Reinforced Concrete Mechanics & Design, (Upper Saddle, NJ: Pearson Prentice Hall, 2008), 641-731. (Wight et al. 2008)

APPENDIX A: SNOW CALCULATIONS

120	APPENDIX A SNO	W CALCULATIONS 1 BYAN BLATZ			
	DESIGN CRITEBIA - ASCE7-10				
	Ce= 1.0 (TABLE 7-2) Ce= 1.0 (TABLE 7-2)	LOWER SECTION - PARTIALLY EXPOSED UPPER SECTION - PARTIALLY EXPOSED			
	Ct= 1.0 (TABLE 7-3)				
	Is = 1.20 (TABLÉ 1.5-2)				
"Ok	$P_3 = CS (FIGURE 7-1) \longrightarrow P_3 = 50 \text{ psf} (FROM DRAWINGS)$ $P_6 = 0.7 (1.0)(1.0)(1.20)(50) = 42 \text{ psf}$				
Ann	SNOW DRIFTS				
	$\gamma = 0.13(50) + 14 \leq 30$ $\gamma = 20.5 \text{ pcF} \leq 30 \checkmark$				
	• DRIFT ONTO FIFTH FLOOR RO	OF			
	lu = 117' he = 13.5'	hj = 0.43 ∛ 117 ∜ 60 + 10 = 1.5 = 4.35' ω = 4 hj = 4(4.35) = 17.4'			
	Pa= (4.35)(20.5) = 89.18	psf			
	· DRIFT ONTO SECOND FLOOR B	OOF - NORTH/SOUTH			
	Lu: 124.4'	hd = 0.43 ∛ 124,4 ∜ 50+10 -1.5 = 4.47' ω = 4(4.47) = 17.7'			
	Pd = (4,47)(20.5) = 91.6	osf			
	· DRIFT ONTO SECOND FLOOR P	ROOF - EAST/WEST			
	Lu = 126.3°	$h_{d} = 0.43 \sqrt[3]{126.3} \sqrt[4]{50+10} - 1.5 = 4.5'$ $\omega = 4(4.5) = 18'$			
	$P_{d} = (4.5)(20.5) = 92.3$	3 psf			
NOT					
and a second	1				

APPENDIX B: WIND CALCULATIONS

	APPENDIX B WIND CALCULATIONS 1 BYAN BLATZ			
~	DESIGN CRITEBIA - ASCE7-10			
	BASIC WIND SPEED (FIGURE 26.5-18): V = 120 mph			
	RISK FACTOR (TABLE 1.5.1): IV ESSENTIAL FACILITY			
	WIND DIRECTIONALITY FACTOR (TABLE 26.6-1): Kd = 0.85			
	EXPOSURE CATEGORY (SECTION 26.7.3): EXPOSURE C			
'n	TOPOGRAPHIC FACTOR (SECTION 26.8): DOES NOT APPLY, KZ+=1.0			
AMPA	GUST FACTOR : SEE ATTACHED CALCULATIONS			
×	· BIGIDITY CALCULATION			
	$L_{eff} = \frac{16(488') + 32(359') + 45(359') + 58(359') + 71(249') + 84(145') + 97.5(145')}{16 + 32 + 45 + 58 + 71 + 84 + 97.5}$ $L_{eff} = 248.5'(4) = 994' \gg 97.5' \longrightarrow CALCULATE h USING SECTION 26.7.3$			
	$\eta_{a} = 75/h = 75/97.5 = 0.769 Hz < 1.0 Hz$. STRUCTURE NOT CONSIDERED RIGID			
	$g_{Q} = 3.4$ $g_{Y} = 3.4$ $g_{R} = \sqrt{2 \ln (3600 (.769))} + \frac{0.577}{\sqrt{2 \ln (3600 (.769))}}$			
	1) GUST CALCULATION - EAST/WEST BOTTOM SECTION			
	$\overline{b} = 0.65 \overline{a} = \frac{1}{6.5}, 0.154 \overline{V}_{2} = 0.65 \left(\frac{58.5}{33}\right)^{1/6.5} \left(\frac{88}{60}\right)(120) = 124.93$ $\overline{Z} = 0.6h = 0.6(97.5) = 58.5 > 15 \checkmark$			
	$l = 500 \ \text{Ft} \overline{e} = 1/5.0 \qquad \overline{L}_2 = 500 \left(\frac{58.5}{3.2}\right)^{1/5} = 560.66$			
	$P_{n} = \frac{7.47(3.45)}{(1+10.3(3.45))^{5/3}} = 0.064$ $N_{1} = \frac{0.769(560.66)}{124.93} = 3.45$			
	$\mathcal{B}_{h} = \frac{1}{2.76} - \frac{1}{2(2.76)^{2}} \left(1 - e^{-2(2.76)}\right) = 0.297 \qquad \mathcal{N}_{h} = \frac{4.6(.769)(97.5)}{124.73} = 2.76$			
	$\mathcal{B}_{B} = \frac{1}{16.18} - \frac{1}{2(16.18)^{2}} (1 - e^{-2(16.15)}) = 0.060 \qquad \mathcal{N}_{B} = \frac{4.6(.769)(571.5)}{124.93} = 16.18$			
	$B_{L} = \frac{1}{46.26} - \frac{1}{2(46.26)^{2}} (1 - e^{-2(46.26)}) = 0.021 \qquad \mathcal{N}_{L} = \frac{15.4(.769)(488)}{124.93} = 46.26$			

$\label{eq:appendix} \texttt{APPENDIX} \quad \texttt{B}: \quad \texttt{WIND} \quad \texttt{CALCULATIONS}$

1	APPENDIX B WIND CALCULATIONS	5 2 BYAN BLATZ			
0	$\beta = 1.0 \%$ AS RECOMMENDED IN ASCE7-10, pg. $\beta = \sqrt{(1/.01)(.064)(.297)(.06)(.53+.47(.021))} = 0.2$	621 48			
	$Q = \sqrt{\frac{1}{1 + .63 \left(\frac{571.5 + 27.5}{560.66}\right)^{0.65}}} = 0.766$				
	$I_{\tilde{E}} = 0.2 \left(\frac{33}{08.5}\right)^{1/6} = 0.182$	C= 0.20 TABLE 26.9-1			
,qva	$G_{f}^{*} = 0.925 \left(\frac{1 + 1.7 (.182) \sqrt{(3.4)^{2} (.766)^{2} + (4.13)^{2} (.248)^{2}}}{1 + 1.7 (3.4) (.182)} \right)$	= [0,84]			
X	2) GUST CALCULATION - EAST/WEST TOP SECTIO	~			
	• ALL CALCULATIONS NOT SHOWN ARE THE SA	ME AS PREVIOUS SECTION			
	$P_{10} = \frac{1}{(1.23)} - \frac{1}{2(11.23)^3} (1 - e^{-2(11.23)}) = 0.085$	NB= 4.6(.769)(396.5) = 11.23 124.93			
	$B_{L} = \frac{1}{34.03} - \frac{1}{2(34.03)^{2}} (1 - e^{-2(34.03)}) = 0.029$	NL = <u>15.4(.767)(359)</u> = 34.03 124.93			
	$P_{3} = \sqrt{(1/.01)(.024)(.277)(.085)(.55+.47(.027))} = 0.296$				
	$Q = \sqrt{\frac{1}{1 + .63\left(\frac{396.5 + 97.5}{560.66}\right)^{0.63}}} = 0.775$				
	$G_{f_{f}} = 0.725 \left(\frac{1 + 1.7 (.182) \sqrt{(5.4)^{2} (.775)^{2} + (4.13)^{2} (.276)^{2}}}{1 + 1.7 (3.4) (.182)} \right) = 0.725 \left(\frac{1 + 1.7 (.182) \sqrt{(5.4)^{2} (.775)^{2} + (4.13)^{2} (.276)^{2}}}{1 + 1.7 (3.4) (.182)} \right)$	0.865 CONTROLS			
	3) GUST CALCULATION - NORTH/ SOUTH BOTTOM SH	ECTION			
	$R_{B} = \frac{1}{(3.82)} - \frac{1}{2((3.82)^{2}} (1 - e^{-2((3.82))}) = 0.070$	$n_{26} = \frac{4.6(.769)(488)}{124.93} = 13.82$			
	$P_{L} = \frac{1}{54.17} - \frac{1}{2(54.17)^2} (1 - e^{-2(54.17)}) = 0.018$	NL= 15.4(.769)(571.5) = 54.17 124.13			
	B= √(1/.01)(.064)(.279)(.07)(.53+.47(.018)) = 0.260	s			
	$Q = \sqrt{\frac{1}{1 + .65 \left(\frac{485 + 97.5}{560.66}\right)^{0.63}}} = 0.779$				
	$G_{\pi_{\frac{1}{2}}} = 0.725 \left(\frac{1+1.7(.182)\sqrt{(3.4)^{2}(.777)^{2}+(4.12)^{2}(.268)^{2}}}{1+1.7(3.4)(.182)} \right)$	= 0.851			

APPENDIX B: WIND CALCULATIONS

	CASE I (I	P _{WX} + P _{LX})	
1) E/W-L	DIRECTION	F (k)	
ROOF		116.56	
STOR	<i>(</i> 6	225.03	
STORY	7 5	215.44	
STOR	(4	209.64	
STOR	13	285.48	
STOR	(2	313.55	
2) N/S-D	IRECTION		
ROOF		106.24	
STOR	<i>(</i> 6	203.65	
STOR	7 5	196.29	
STOR	14	191.02	
STOR	13	185.20	
STOR	(2	269.57	
DEFLECTIC	NS		
Story	Load	UX	UY
ROOF	XCASE1	0.4117	-0.0032
ROOF	YCASE1	. 0	0.5179
STOR	76 XCASE1	0.3724	-0.0019
STORY	76 YCASE1	0.0012	0.4628
STOR	75 XCASE1	0.3189	-0.0007
STOR	/5 YCASE1	0.0023	0.3899
STOR	4 XCASE1	0.2514	0.0004
STORY	/4 YCASE1	0.0034	0.3
STORY	/3 XCASE1	0.1664	0.0009
STORY	/3 YCASE1	-0.0025	0.1977
STOR	2 XCASE1	0.0936	0.0001
STORY	2 YCASE1	0.0007	0.1046

	CASE II (.75	(P _{wx} +P _{LX})B	_x (±.15B _x))	
3)	E/W-DIRECTION	F (k)	B _x (in)	M⊤(k-in)
	ROOF	87.4	4759.25	-62409
	STORY 6	168.8	4759.25	120486
	STORY 5	161.6	4759.25	115347
	STORY 4	157.2	4759.25	112247
	STORY 3	214.1	6684.375	-214677
	STORY 2	235.2	6857.375	241892
4)	N/S-DIRECTION	F (k)	B _x (in)	M⊤(k-in)
	ROOF	79.7	4307	51477
	STORY 6	152.7	4307	98676
	STORY 5	147.2	4307	95111
	STORY 4	143.3	4307	92554
	STORY 3	138.9	4307	89737
	STORY 2	202.2	5855	177564
DEF	LECTIONS			
	Story	Load	UX	UY
	ROOF	YCASE2	0.0059	0.3955
	ROOF	XCASE2	0.3103	0.0005
	STORY6	YCASE2	0.0078	0.3532
	STORY6	XCASE2	0.2812	0.0012
	STORY5	YCASE2	0.0096	0.2976
	STORY5	XCASE2	0.2415	0.0017
	STORY4	YCASE2	0.0112	0.2292
	STORY4	XCASE2	0.1914	0.002
	STORY3	YCASE2	-0.0063	0.1507
	STORY3	XCASE2	0.1231	0.0015
	STORY2	YCASE2	0.0026	0.0786
	STORY2	XCASE2	0.0713	0.0001

																UΥ	-0.0259	2.3692	-0.018	2.0666	-0.0105	1.6939	-0.0035	1.2654	0.0014	0.7939	0.0004	0.3928
KE	F (k)	744.3	895.3	741.4	781.6	573.5	541.1	F (k)	744.3	895.3	741.4	781.6	573.5	541.1		ХN	1.6427	0.0001	1.4456	0.0082	1.1968	0.0159	0.9043	0.0226	0.5614	-0.0158	0.2962	0.0043
EARTHQUA	CTION							CTION								Load	EWXQUAKE	NSYQUAKE	EWXQUAKE	NSYQUAKE	EWXQUAKE	NSYQUAKE	EWXQUAKE	NSYQUAKE	EWXQUAKE	NSYQUAKE	EWXQUAKE	NSYQUAKE
	7) E/W-DIRE	ROOF	STORY 6	STORY 5	STORY 4	STORY 3	STORY 2	8) N/S-DIRE(ROOF	STORY 6	STORY 5	STORY 4	STORY 3	STORY 2	DEFLECTIONS	Story	ROOF	ROOF	STORY6	STORY6	STORY5	STORY5	STORY4	STORY4	STORY3	STORY3	STORY2	STORY2
	M _T (k-in)	-85490.3	16372.5	157983.9	153737	-93788.6	314871.9																					
	B _Y (in)	4307	4307	4307	4307	4307	5855																					
	F (k)	-59.8	114.7	110.5	107.5	-104.3	151.8																					
SEIV	V/S-DIRECTION	ROOF	STORY 6	STORY 5	STORY 4	STORY 3	STORY 2									η	0.1302	0.1295	0.1152	0.0881	0.0514	0.0288						
CA	B _x (in) /	4759.25	4759.25	4759.25	4759.25	6684.375	6857.375									XN	0.2377	0.2167	0.1879	0.1511	0.0884	0.0553						
	F (k)	65.6	126.7	121.3	118.0	160.7	176.5									Load	CASE4	CASE4	CASE4	CASE4	CASE4	CASE4						
	6) E/W-DIRECTION	ROOF	STORY 6	STORY 5	STORY 4	STORY 3	STORY 2								DEFLECTIONS	Story	ROOF	STORY6	STORY5	STORY4	STORY3	STORY2						
																υY	0.3861	0.3457	0.2919	0.2253	0.149	0.0785						
(+.75PLX)	N/S-DIRECTION	79.7	152.7	147.2	143.3	138.9	202.2									NN	0.3088	0.2802	0.2409	0.191	0.1229	0.0708						
CASE III (.75PW)	/W-DIRECTION	87.4	168.8	161.6	157.2	214.1	235.2									Load	CASE3	CASE3	CASE3	CASE3	CASE3	CASE3						
	5) EJ	ROOF	STORY 6	STORY 5	STORY 4	STORY 3	STORY 2								DEFLECTIONS	Story	ROOF	ROOF	STORY5	STORY4	STORY3	STORY2						

APPENDIX C: SEISMIC CALCULATIONS

2-1	APPENDIX	SEISMIG CALCULATIONS	RYAN BLATZ
	DESIGN CRITERIA: ASCE 7	-10	
	SITE CLASS C (FROM GEO	TECHNICAL REPORT)	
	RISK CATEGORY (TABLE I.S.	I): IN ESSENTIAL FACILITY	
	IMPORTANCE FACTOR (TABLE	1.5-2): IE 1.5	
	55 = 0.20 (FIGURE 22-1)	5, = 0.06 (FIGURE 22-	2)
	Fa = 1.2 (TABLE 11.4-1)	Fy + 1.7 (TABLE 11.4-	2)
QVAI	Sms = (1.2)(0.2) = 0.24	SMI + (1.7)(0.06) + 0.102	
A	Sps * 3/3 SMS * (3/5)(0.24) * 0	.16 SDI = 2/3 SmI = (2/3) (0.10.	2) = 0.063
	SEISMIC DESIGN CATEGOR	C (TABLE 11.6-1) } USE	HIGHER CLASS C
	RESPONSE MODIFICATION COL	EFFICIENT (TABLE 12.2-1): R+3	· ORDINARY REINFORCED CONCRETE MOMENT FRAMES
-	EQUIVALENT LATERAL FOR	E METHOD	
	Ta * Ct h * = (0.016)(97.5)	0. ⁹ = 0.987 Ct = 0 X = 0	.016 (TABLE 12.8-2) .9 (TABLE 12.8-2)
	$C_{5} = \frac{S_{DS}}{(R/I_{c})} = \frac{0.16}{(3/1.5)} = 0.08$		
	V= CsW = (0.08)(104,923)	= 8,394 KIPS	
	Fz = Cvz V	k = 1.2	4 (SECTION 12.8.3)
	$C_{YZ} = \frac{\omega_X h_X}{\mathcal{Z} \omega_i h_i^{k}}$		
0			
			THEFT

APPENDIX D: COLUMN DESIGN

	T	th atte	P	0	T	22	2 =	0	00	2	3	-	- 0	0 00	0	-	-	0	0.0	5 12			2 60	0			03	0.0	_	0		1.0
	L	Conc	sq.	ANEL		0.80	0.85	0.91	0.94		0.87	0.85	0.01	0.94	0.97	0.89	0.89	0.91	0.91		0.89	6870	0.92	0.97	0.80	0.911	0.92	0.970	000	0.910	0.026	0.997
LE L	('M')	Total	Steel	ROP P	Number of Street	2.19	2.95	3.47	4.14		2.34	2,00	3.70	4.31	5.15	2.26	2.76	3.34	4.60		2.31	13 6	4.36	5,15	2.47	3.08	3.65	4.59		2.49	4.07	4.83
s ⁽²⁾	RS (E	Strip	Bottom	VEEN C		9-#5	10-#5	11-#5	10-#6		10-#01	10-#10	9770	15-#5	10-#7	10-#5	10-#5	12-#5	10-#6		10-#5	13#10	16-#5	10-#7	11-#5	12-#5	15-#5	18-#5	2	11-#5	SH-CI	20-#5
Panel	NG BA	Middle	Top	TH BETV	1	0#6	11-#5	13-#5	11-#6 10-#7		0#-01	2#-01	15.45	17-#5	20-#5	10-#5	11-#5	10-#6	9#1	-	10-#2	11-46	14-01	12-#7	11-#5	9#-01	17-#5	11-#7	2	2-#5	0-#7	3#12
Drop No Be	FORCI	Strip	Bottom	AB DEPT	l au a	2#-11 5#-11	14-#5	14-6	11-#8		C#-01	16.46	19-#5	12-#7	15-#7	11-#5	14-#5	18-#5	9#48		S#-71	5#-00	8#-01	12-#8	3-#5	5#-81	57-#5	8#-11		0#-C	B.#G	6#-0
With	REIN	Column	Top	TAL SLA	40.40	12-#6	13-#6	14-#6	12-#7	an at	0#-01	15-#6	12-#7	26-#5	14-#1	14-#5	14-#6	15-#6	54-92	an o	0#-0	3-#7	3-#7	2#-9	8-#5	5-#6	3#2	5-#7		C#-1	6-45	2#-5
h	(0)	Square	(in.)	n. = TO	100	19	22	24	25	10	10	22	24	26	26	12	19	22	35	\$	20	22	25	27	12 1	20	23	27		20 1	23	26 1
	actored	bosed	S (Jsd)	h = 10	100	200	300	400	600	400	000	300	400	500	600	100	200	000	200	000	000	300	400	200	100	500	300	000		000	00	001
	S	lint.	(¥-¥)	-	247 E	426.5	539.0	649.5	873.3	35.0.2	483.3	607.5	735.1	856.7	985.7	404.0	543.6	7.080	964.4	0 121	604.9	768.0	923.7	082.2	503.3	576.5	856.1	211.9	- 00	51.8	51.9 3	151.2 4
	MENT	Bot.	(¥#)		235.0	316.8	400.4	482.5	728.2	0 296	359.0	451.3	546.1	636.4	789.3	300.1	403.8	008.0	716.4	336 G	449.4	570.5	686.2	003.9 10	373.9	502.6	535.9	900.3 12	1 2 4	558.5	707.1 9	355.2 11
anels	MO	Edge			117.0	158.4	200.2	241.3	324.4	133 1	179.5	225.7	273.1	318.2	1.000	50.1	6103	04 0	58.2	67.8	24.7	85.3	43.1	810	86.9	51.3	18.0	50.1	08.2	79.2	53.6 3	27.6 8
Drop F		Total	(jed)		2.34	2,85	3.35	4.07	5.93	2.48	2.94	3.61	4.28	5.12	0.07	2.47	3.19	2 82	5.36	2.57	3.34 2	4.11 2	4.98 3	0.00	2.75 1	3.61 2	6 42 4	5.26 4	C 180	3.78 2	1.82 3	5.71 4
With	E. W.)	Strip	in the	PANELS	9#6	10-#5	12-#5	0#-01	5#-61	10-#5	11-#5	13-#5	16-#5	10-#7	24-2	10-#5	C#-71	10-#1	15-#6	10-#5	13-#5	12-#6	20-#5	0#-01	11-#5	5#2	1#-01	11-42	2.45	2-#6	1-#1	8-#6
Beams	BARS (Middle	Bottom	DROP	9#6	11-携5	10-#6	14-11	6#6	10-#5	9#-6	16-#5	19-#5	12-#7	0#-71	11-#5	10-#0	8#6	18-#6	12-#5	16-#5	20-#5	10-#8	0	13-#5	10-#1	14-71	14-21	5#-91	14-#6	9#-81	6#-01
PANEI No E	CING	Ton	in the	ETWEEN	14-#5	14-#6	20-#5	18-46	26-#5	16-#5	18-#5	12-#7	13-#7	12-#8	0#-71	15-#5	C#-C1	27-#5	12-#8	17-#5	16-#6	18-#6	27#5	2	14-#6	0#-01	10-#0	13-#8	4-#6	9#-81	12-#1	2#-9
EDGE	INFOR	mn Strip (1	Bottom	EPTH BI	9#6	2#-6	15-#6	17.#7	17-#8	10-#6	19-#5	17-#6	12-#8	12-#9	04-01	16-#5	0#0	11-#9	13-#9	18-#5	17-#6	22-#6	20-#7	2	14-#6	0# FT	0#-10	6#-21	22-#5	16-#7	6#-81	6#-91
UARE	R	Ton	Ext +	- SLAB D	12-#5 2	2-#5 4	2-#2 1	3-#5 1	3-#5 1	2-#5 3	2-#5 3	2-#5 2	2-#5 2	5-#5 0	2	2-#5 2	2-#5 1	4-#5 4	4-#5 1	3-#5 2	3-#5 4	3-#5 4	4-#5 3 6-#5 4		3-#2 3	0 44 0 C	5-#5 4	5-#5 2	+#5 1	F#2 3	+#2 4	0-#2 3
ðs	advenue -		Yr	= TOTAL	0.802 1	0.813 1	0.631	0.646	0.629	0.833 1	0.722 1	0.704 1	0.640 1	1 629 1	-	0.749 1	632 1	0.735 1	.630 1	.785 1	1778 1:	718 1:	1 124 16		.816 1.	000 I	704 1	632 16	732 14	732 14	693 14	633 15
	Solute C	Size	(u)	= 10 in.	12	9	20	3 22	24	12	16	19	8	24 0		12 0	19 61	21 0	23 0	12 0	17 6	19 0	23 0		12 0	19 0	22 0	23 0	12 0	17 0	19 0	52 0
0	Drop	Width	(#)	4	8.33	8.33	8 33	00.00	10.00	8.67	8.67	8.67	10.0	0.40		00.6	9.00	00.6	0.80	9.33	9.33	9.33	1.20		19.67	10.0	1.60	1.60	0.00	0.00	0.00	00.2
0 Ban	Square	Depth	(in.)		4.25	4.25	8.25	8.25	10.25	4.25	6.25	6.25	27.0	0.25		6.25	8.25	8.25	0.25 1	6.25	6.25	8.25	0.25 1		0 40	0.25	0.25 1	2 25 1	8.25 10	8 25 1	4 070	1 07
ade 6(Factored Superim-	posed	(Isd)	1	100	200	100	500	600	100	200	300	100	000		100	300	100	500 1	100	200	000	t One	and a	001	300 11	1001	600 1.	100	000	1 000	1 100
Gre	SPAN	1 = 12	E	-	52	52	3 10	25	25	26	8	20	0, 20	26		27	27	27 .	27	28	28	200	58	-	80	28	29	29	30	30	200	3

APPENDIX D: COLUMN DESIGN

SLAB THICKNESS FOR GRAVITY LOADING MAX SPANS: FIRST FLOOR - 30"-0" SECOND FLOOR - 30'-0" BUSINESS - 24'-0" THIRD FLOOR - 30'- 0" BUSINESS - 24'-0" FOURTH FLOOR - 30'-0' FIFTH FLOOR - 30'-0" SHORT INTERIOR COLUMN LOADING - PURE AXIAL DAMPAD 150 pet (10) (26') (21.0') (2 FLOORS) = 136.5 KIPS SELF WT 20 pst (26) (21) (2 FLOORS) = 21.8 KIPS MEP AND MISC. 100 15F (26)(21')(1 FLOOR) = 54.6 HIPS LIVE LOAD 24.7 KIPS EARTHQUAKE LOAD 30 pst (26) (21) = 16.4 KIPS SNOW 20 psf (26) (21) = 10.9 KIPS ROOF LIVE 1.4 (158.3) = 221.6 KIPS 1.2 (158.3) + 1.6 (54.6) + 0.5 (16.4) = 285.5 KIPS 1.2 (158.3) + 1.6 (16.4) + 54.6 = 270.8 KIPS 1.2 (158.3) + 1.0 (24.7) + 54.6 + 0.2 (16.4) + 272.5 KIPS Po = 0.85 fc Ac 285.5 . (0.85)(4) Ac Ac. 84 ---- NEED A 10 × 10 COLUMN CRSI CALLS FOR A 20 420 COLUMN SO ITS ORAY / TALL INTERIOR COLUMN LOADING - PURE ANIAL 150 (12) (26") (21") (7 FLOORS) = 478 KIPS SELF WT. 20 (26')(21') (7 FLOORS) = 76.4 HIPS MEP AND MISC. 100 (26) (21) (6 FLOORS) = 327 KITS LIVE LOAD 20 (26) (21) = 11 KIPS ROOF LIVE LOAD 20 (26) (21) = 16.4 KIPS SNOW LOAD 5.7 KIPS EARTHQUAKE LOAD 1.4 (554.4) = 776.2 kips 1.2 (554.4) + 1.6 (327) + 0.5 (16.4) = 1196.7 HIS Por 0.85 Fc Ac 1196.7 = 0.85(4) Ac 1,2 (554.4) + 1,0 (5.7) + 327 + 0.2 (16.4) = 1001.3 KIPS Ac = 352 NEED A 19×19 COLUMN CRSI CALLS FOR 20x20 /

APPENDIX D: COLUMN DESIGN

APPENDIX D: COLUMN DESIGN - 20x20's

APPENDIX D: COLUMN DESIGN - 24x24's

APPENDIX D: COLUMN DESIGN - 30x30's

APPENDIX E: COST DATA - STEEL SYSTEM

	Total Metal Decking Costs (2" deep, 20 gauge)													
Level	Area (ft ²)	Unit	Crew	Daily Output	Labor Hours	Bare Costs	Total							
Roof	70888	S.F.	E4	3600	0.009	2.3	163042							
6	70888	S.F.	E4	3600	0.009	2.3	163042							
5	70888	S.F.	E4	3600	0.009	2.3	163042							
4	70888	S.F.	E4	3600	0.009	2.3	163042							
3	99794	S.F.	E4	3600	0.009	2.3	229526							
2	172144	S.F.	E4	3600	0.009	2.3	395931							
1	172144	S.F.	E4	3600	0.009	2.3	395931							
Ground	95676	S.F.	E4	3600	0.009	2.3	220055							
							1893613							
			3/4	4" Shear Studs To	otal									
	Quantity	Crew	Unit	Daily Output	Labor hours	Bare Cost	Total							
	130361	E-10	Ea.	935	0.017	1.87	243775							

	Total Steel Beam and Column Costs Size Quantity Length (ft) Unit Crew Daily Output Labor Hours Bare Cost Total													
Size	Quantity	Length (ft)	Unit	Crew	Daily Output	Labor Hours	Bare Cost	Total						
W8x31	29	841	L.F.	E2	1080	0.052	46.39	39013.99						
W8x40	15	435	L.F.	E2	550	0.102	73.63	32029.05						
W8x58	4	142	L.F.	E2	550	0.102	73.63	10455.46						
W8x67	4	142	L.F.	E2	984	0.057	96.27	13670.34						
W10x12	577	7118.65	L.F.	E2	600	0.093	23.49	167217.1						
W10x33	39	624	L.F.	E2	550	0.102	53.13	33153.12						
W10x39	31	614	L.F.	E2	550	0.102	75.13	46129.82						
W10x45	9	144	L.F.	E2	1032	0.054	66.07	9514.08						
W10x49	71	1900	L.F.	E2	550	0.102	75.13	142747						
W10x60	10	425	L.F.	E2	550	0.102	75.13	31930.25						
W10x88	6	194	L.F.	E2	640	0.088	126.56	24552.64						
W12x14	115	1713	L.F.	E2	880	0.064	26.77	45857.01						
W12x16	20	295	L.F.	E2	880	0.064	26.77	7897.15						
W12x19	234	4946.75	L.F.	E2	880	0.064	35.27	174471.9						
W12x36	2	72	L.F.	E2	810	0.069	53.19	3829.68						
W12x40	36	1320	L.F.	E2	750	0.075	74.6	98472						
W12x45	39	1253.5	L.F.	E2	750	0.075	74.6	93511.1						
W12x50	4	112	L.F.	E2	1032	0.054	73.07	8183.84						
W12x53	67	711.75	L.F.	E2	750	0.075	74.6	53096.55						
W12x58	60	2122	L.F.	E2	750	0.075	85.6	181643.2						
W12x65	55	1857.5	L.F.	E2	640	0.088	105.56	196077.7						
W12x72	27	825	L.F.	E2	640	0.088	105.56	87087						
W12x79	13	569	L.F.	E2	640	0.088	105.56	60063.64						
W12x87	26	777	L.F.	E2	984	0.057	124.27	96557.79						
W12x96	61	2180.5	L.F.	E2	640	0.088	126.56	275964.1						
W12x106	9	341	L.F.	E2	900	0.089	152.14	51879.74						
W12x135	1	49	L.F.	E2	1050	0.076	206.26	10106.74						

APPENDIX	Ε:	COST	DATA	- STEEL	. SYSTEM
----------	----	------	------	---------	----------

W12x136	15	300	L.F.	E2	1050	0.076	206.26	61878
W12x152	28	896	L.F.	E2	1050	0.076	206.26	184809
W14x22	156	3056	L.F.	E2	990	0.057	40.24	122973.4
W14x30	118	1627.5	L.F.	E2	900	0.062	46.16	75125.4
W14x38	9	285.99	L.F.	E2	810	0.069	64.19	18357.7
W14x48	115	2737.5	L.F.	E2	800	0.07	78.25	214209.4
W14x68	26	765.65	L.F.	E2	760	0.074	107.53	82330.34
W16x26	1255	30825.83	L.F.	E2	1000	0.056	40.2	1239198
W16x31	738	19826.37	L.F.	E2	900	0.062	47.16	935011.6
W16x36	28	682	L.F.	E2	800	0.07	60.25	41090.5
W18x35	349	8134	L.F.	E5	960	0.083	53.76	437283.8
W18x40	187	5129.5	L.F.	E5	960	0.083	60.76	311668.4
W21x16	2	40.5	L.F.	E5	880	0.064	26.77	1084.185
W21x19	32	624	L.F.	E5	880	0.064	35.27	22008.48
W21x20	2	84	L.F.	E5	880	0.064	35.27	2962.68
W21x44	300	7490.91	L.F.	E5	1064	0.075	65.69	492077.9
W21x50	87	2164.41	L.F.	E5	1064	0.075	74.19	160577.6
W21x57	7	167.32	L.F.	E5	1036	0.077	98.83	16536.24
W21x152	7	252	L.F.	E5	1050	0.076	206.26	51977.52
W24x55	122	3092.33	L.F.	E5	1110	0.072	80.48	248870.7
W24x62	30	818	L.F.	E5	1110	0.072	90.48	74012.64
W24x68	11	312.82	L.F.	E5	1110	0.072	98.48	30806.51
W24x76	27	718.98	L.F.	E5	1110	0.072	109.98	79073.42
W27x84	26	715.83	L.F.	E5	1190	0.067	120.64	86357.73
W27x94	1	26	L.F.	E5	1190	0.067	133.64	3474.64
W30x99	5	155	L.F.	E5	1200	0.067	140.6	21793
W33x130	4	118	L.F.	E5	1160	0.069	186.77	22038.86
								7032700

	Concrete Costs													
Level	Area (ft ²)	Thickness	Quantity	Unit	Crew	Daily Output	Labor Hours	Bare Costs	Total					
Roof	70888	3.25"	711	C.Y.	C-20	140	0.457	22.75	16175					
6	70888	3.25"	711	C.Y.	C-20	140	0.457	22.75	16175					
5	70888	3.25"	711	C.Y.	C-20	140	0.457	22.75	16175					
4	70888	3.25"	711	C.Y.	C-20	140	0.457	22.75	16175					
3	99794	3.25"	1001	C.Y.	C-20	140	0.457	22.75	22773					
2	172144	3.25"	1727	C.Y.	C-20	140	0.457	22.75	39289					
1	172144	3.25"	1727	C.Y.	C-20	140	0.457	22.75	39289					
Ground	95676	3.25"	960	C.Y.	C-20	140	0.457	22.75	21840					
									187892					
				Cementi	tious Firep	proofing								
	ltem		Quantity	Unit	Crew	Daily Output	Labor Hours	Bare Costs	Total					
	Beams & O	Columns	122771.1	S.F.	G-2	1500	0.016	1.19	146098					
	Decking		823310	S.F.	G-2	1250	0.019	1.59	1309063					
									1455160					

APPENDIX E: COST DATA - CONCRETE SYSTEM

(Concrete C	olumn Costs (Icluding	4 use form	ns, cocrete	, reinforcment,	placement, ai	nd finishing)	
Size	Quantity	Volume per Column	Unit	Crew	Daily Output	Labor Hours	Bare Cost	Total
30x30	156	22.57	C.Y.	C-14A	13.18	15.48	1315	4630010
20x20	4	4.32	C.Y.	C-14A	11.23	18.17	1261	21790
24x24	57	4.3	C.Y.	C-14A	11.23	18.17	1261	309071
20x20	77	3.29	C.Y.	C-14A	11.23	18.17	1261	319449
20x20	57	1.65	C.Y.	C-14A	11.23	18.17	1261	118597
								5398917

Flat S	Flat Slab Costs (Icluding 4 use forms, cocrete, reinforcment, placement, and finishing)													
Level	Slab Volume	Unit	Crew	Daily Output	Labor Hours	Bare Cost	Total							
Roof	2991	C.Y.	C-14B	50.99	4.079	455.55	1362550							
6	2991	C.Y.	C-14B	50.99	4.079	455.55	1362550							
5	2991	C.Y.	C-14B	50.99	4.079	455.55	1362550							
4	2991	C.Y.	C-14B	50.99	4.079	455.55	1362550							
3	3460	C.Y.	C-14B	50.99	4.079	455.55	1576203							
2	6852	C.Y.	C-14B	50.99	4.079	455.55	3121429							
1	6316	C.Y.	C-14B	50.99	4.079	455.55	2877254							
Ground	3248.3	C.Y.	C-14B	50.99	4.079	455.55	1479763							
							14504849							

Shear Wall									
Item	Quantity	Crew	Unit	Daily Output	Labor hours	Bare Cost	Total		
Reinf. #3-#7	4.1	4 Rodm	Ton	2.3	13.913	1455	5966		
Reinf. #8 - #18	3.64	4 Rodm	Ton	3	10.667	1325	4823		
Forms - 2 use	13503	C-2	SFCA	345	0.139	6.93	93576		
6ksi Concrete	750	-	C.Y.	-	-	127	95250		
Placing	750	C-20	C.Y.	120	0.533	26.15	19612.5		
							219226.8		

APPENDIX F: STEEL CONSTRUCTION SCHEDULE

Medical Center 1-14-09 Baseline Schedule Update 1

							Companso
Activity Name	Original Start Duration		Bit Early Start	BL1 Serly Physh	20 1151 militation a	08 Lidelelesele	2009 - (EMANA d TATE O MO, LEW NA
Crane 1- Division 1	2 29-Jul-08 A	29-Jul-08 A	1040APR1542159	A1854-2624-654	a company.	Crand 1	Division 1
Grane 1- Division 2	1 28-J.(-06 A	29-Jul-08 A	3			Crané I	Division 2
Grane 1- Division 3	3 01-Aug-08 A	05-Aug-08 A	1			Cianb 1	Elvicion 3
Crane 1- Division 4	2 04-Aug-08 A	05-Aup-08 A	1			. Clene 1	- Chuibion 4
Area 1- 2nd Floor- Deck Complete	0	19-Aug-08 A	1			 Admin 	1-2rid Floor-Deck Complete
Area 1- 1st Floor Deck Complete	0	13-Aug-08 A	2			Area	+ 1st Fldor Dank/Complete
Grane 1- Division 5	3 11-Aug-08 A	13-Aug-08 A	14-Aug-08	10-Sep-08		Grane	H Division 5
Area 2 West- 1st Floor Deck Complete	0	26-Sep-08 A	1	-		Ales	2 Westi 1st Floor Deck Complete:
Grane 1- Division 8	3 22-Aug-08 A	26-Aug-08 A				Grane	1 Division B
Crane 1- Division 9	3 27-Aug-08 A	29-Aug-08 A	1			Grane	1-Division 9
Area 2 Wast- 2nd Floar Deck Complete	0	A 80-lo0-20				• A 74	a 2 West- 2nd Floor Deck Complete
Area 2 West- 3rd Floor Deck Complete	0	10-0cl-08 A				• o. ht	as 2 West- and Floor Deck Complete
Crane 1- Division 14	5 11-Sep-08 A	17-Sop-08 A	1			Cráne	1-Division(14
Crane 1- Division: 15	2 17-Sep-08 A	18-Sep-08 A	1			Crane	1-Dhristor 15
Area 2- 4th Floor Deck Complete	0	24-0cH08 A	1			4 o A	ea 2: 4th Floor Deck Complete
Area 2- 5th Floor Deck Complete	0	14-Nov-06 A	1			8 A	ea 2-5th Floor Deck Complete
Crane 1- Division 20	2 25-Oct-08 A	28-0ch08 A	[- Gra	ne 1-Dhuisian 20
Orane 1- Division 21	2 27-Oct-08 A	28-Oct-08 A				Gra	hp1-Dhision ≥1
Area 2- 6th Floor Dack Complete	0	21-Nov-06 A	1			84	res 2- 6th Floor Deck Controlete
Orane 1- Division 6	2 13-Oct-08 A	14-0c3-08 A				Ciar	e 1-Division 6
Crane 1- Division 54	1 24-Oct-08 A	24-Oct-08 A					Craho 1- DVIsion 54
Crans 1- Division 7	2 10-Nov-08 A	11-Nov-08 A					Crahel 1-Division 7
Crane 1- Division 10	2 17-Oct-08 A	20-Cttl-08 A	08-Sep-08				Circinel 1- Division 10
Crane 1- Division 11	2 18-Oct-08 A	21-Oct-08 A					Qráne 1+ Division 11
Crane 1- Division 12	2 21-Oct-08 A	22-Dct-08 A					Grana 1- Division 12
Area 3 South- 2nd Floor Deck Complete	0	25-Nov-08 A				•	Ama 3 Bouth- 2hd Flator Deck Complete
Area 3 South- 1st Floor Deck Complete	0	18-Nov-08 A	1			•	Ariss 3 South- 1st Floor Deck Complete
Crans 1- Division 13	2 14-Nov-D8 A	17-Non-08 A					Crane 1- Division 13
Area 3 South- 3rd Floor Deck Complete	0	02-Dec-08 A	1			• • • •	Area & South-3rd Floor Deck Complete
Crane 1- Division 18	3 31-Oot-06 A	04-Nov-06 A					Diarle 1- Olvibion 10
Crane 1- Divaion 17	2 06-Nov-08 A	07-Nov-08 A					Charle 1-Division 17
Orane 1- Division 18	2 20-Nov-08 A	21-Nov-08 A					Crahe 1-Otrisicin 18
Area 3- 4th Floor Deck Complete	0	16-Dec-08 A				•	o Area 3-4th Flodr Deck Complete
Crane 1- Division 19	4 21-Nov-08 A	26-Nov-08 A				*	Onine 1- Division 19
Area 3- 5th Floor Deck Complete	0	05-Jan-09 A					Arela 3- 5th Floor Debk Complete
Crane 1- Division 48	3 03-Dec-08 A	05-Dec-08 A				•	Cranel 1- Division 46
Crane 1- Division 47	1 13-Jan-09 A	23-Jan-09					F Grate 3- División 47
Crane 1- Division 48	1 13-Jan-09 A	28-Jan-09					🚰 Crahe 1- Dhision 48
Crane 1- Division 49	4 02-Jan-09 A	07-Jan-09 A					Chanle 1- Division 49
Area 2 East- 1st Hoor Deck Complete	0	23-Jan-09*					Anta 2 East-1st Floor Deck Complete
Area 2 East- 2nd Floor Deck Complete	0	30-Jan-09*					S Arias 2 Gast- 2nd Floor Deck Complete
vel of Effort - Actual Work - i Effort - Remaining Work -	 Critical Reteaching Milestone 	8 W		Ρ	age 10 of 45		TASK filter: All Activities

APPENDIX F: STEEL CONSTRUCTION SCHEDULE

Medical Center 1-14-09 Baseline Schedule Update 1

Arital Mission Contractor Contactor Contractor	Drinka	Start Stort A	Fight to the	BIT Early Start	Bist: Early (727-74	0.2754.62	1,4720	89.50	ióláca	-01	1.4.4.4.4.4.4. 2009 .2.4	00	nipariso	12019
	Duration				Finish	3.5 14	AN F	J N	siol	ND.	JEMAMJUA	SOND	JEMAN	र्ग जन्म
Crane 1- Division 50	4	07-Oct-08 A	10-Oct-08 A						1	T	Grarie 1- Division 6	0		T
Crane 1 - Division 51	2	04-Dec-06 A	05-Dec-08 A			1111	TT	11	11	11	Crahe 1- Division :	n		11
Grane 1- Division 52	3	08-Dec-08 A	10-Dec-08 A			1					¢ Grane 1- Division	52		
Area 3 North- 2nd Floor Deck Complete	0		28-Jan-09		1						Area 3 North 2	td Floor Do	sk Complete	
Area 3 North- 3rd Floor Deck Complete	0	1	30-Jan-09*			1111				i i	Acep 3 North-1	nd Floor De	ck Complete	
Grane 2- Division 22	Б	22-Jul-08 A	28-Jul-08 A			1		•		Ċrá	a 2 Division 22			11
Area 4 East- 1st Floor Deck Complete	0		05-Jan-09 A				111	- I - I	TT	0	Area 4 East- 1at Flo	ir Detk Cor	nple16	TT
Crane 2- Division 29	4	30-Jul-D8 A	04-Aug-08 A			1		•		Cris	ne 2 Division 23			11
Crane 2- Division 24	3	19-Aug-06 A	21-Aug-08 A			1111			1.6	Die	ne z Division 24			
Drane 2- Division 25	4	25-Sep-08 A	30-Sep-08 A		1	1		11		, da	ne 2- Division 35			
Crane 2- Division 26	3	02-Oct-08 A	06-Dat-08 A			1111			1	, di	aria 2- División 26			
Area 4 East- 2nd Floor Deck Complete	0		03-Oc1-08 A				11	-1.1	•	6	Area 4 East- 2hd Fk	or Deck Co	mplete	Π
Area 4 East- 3rd Floor Deck Complete	0		10-Col-D8 A			1			٠		Alea 4 East- and FI	por Deck Cd	mpleje	11
Orane 2- Division 27	4	05-5ep-08 A	10-Sep-08 A	11-Sep-08	01-Oct-08	1		12	11	ģ	ahe 2- Division 27			
Crane 2- Division 28	3	22-Sep-08 A	24-Sep-08 A	1			111		44	i e	rahe 2-10%Islon 28			
Crans 2- Division 29	3	18-Oct-08 A	22-Oci-08 A			1111				1	rime 2- Division 29			
Crane 2- Division 30	4	25-Oct-08 A	30-Oct-08 A								Tranë 21 Division 39	mm		TT
Area 4 East- 4th Floor Deck Complete	0		24-OcI-08 A						٠		Anal 4 Estate 4th F	joch Djeck C	omplete	
Area 4 East-5th Floot Deck Complete	0		14-Nov-08 A						11		Anta 4 East- 5th	Floòr Deák (Contraplication	11
Crane 2- Division 31	5	05-Oct-09 A	10-Oct-08 A		1						Charle 2- Division 31			
Crane 2- Division 32	5	11-Oct-08 A	17-Oct-08 A					1	•		Grahe 2-Division 32			
Crane 2- Division 33	3	31-Oct-08 A	04-Nov-08 A				11		ŤŤ		Grane 2-Division 33			T
Crarte 2- Division 34	4	05-Nov-08 A	10-Nov-08 A	1	1				11		Drané 2 Division 3	4		
Crane 2- Division 35	4	12-Nov-08 A	17-Nov-08 A		1	1::::			11	•	🖕 Olanje 2- Division 3	5		
Crane 2- D'Msion 36	3	20-Nov-08 A	24-Nov-08 A							•	Charle 2- Division :	6		
Area 4 West- and Floor Deck Complete	0		24-Dec-08 A	1						٠	Anul 4 West 3	ti Riber Dec	k Complete	
Area 4 West- 2nd Flour Deck Complete	0		(2-Feb-00*]			TT	1	TT		🕈 🔊 Area 4 West-	2nd Floor D	eck Complete	8
Crane 2- Division 37	4	01-Dec-08 A	04-Dec-09 A							1	Crahe 2- División	37		
Crans 2- Division 38	4	18-Dec-08 A	23-Dec-08 A							1	Crane 2 Division	38		
Atea 4 West- 4th Floor Deck Complete	0	1	19-Dec-08 A							٠	Arola 4 Viceal-	th Floor De	ok Condiale	
Area 4 West- 5th Floor Deck Complete	0	{	05-Feb-09*		•						🕈 😠 Area 7 West-	5th Fibor Dr	ck Complete	
Area 4 West- 8th Floor Deck Complete	Ó		13-Feb-09*		Louis				T	Т	Atea 4 West	6th Floor D	eck Complet	0
Grane 2- Division 38	3	04-Dec-08 A	08-Dec-08 A	1	1					11	Grane 2 Division	39		
Grane 2- Division 40	2	14-Jan-08 A	05-Feb-09		<u>}</u>						📑 Cránel 2- Division	40		
Area 4 East- 6th Floor Deck Complete	a		11-Feb-09*								Area 4 East- 6th	Floor Deak	Camplele	
Orane 2- Division 41	2	19-Feb-09	20-Feb-09*	1	1						🖕 Grane 2- Divisi	in 41		
Grane 2- Division 42	2	23-Feb-09	24-Feb-08*		1		11		TI		Grade 2- Divisi	śn 42		
Crane 3- Division 43	5	10-Oct-08 A	16-Oc]-08 A						•	, o	anie 3- Dihiikloh 43			
Crane 3- Dhilsion 44	2	16-Oct-08 A	17-Oct-08 A				1.1		11	, 0	ane 3- Dhision 44			
Crane 3- Division 45	10	21-OcH08 A	03-Nov-08 A						•	Βġ	rene 3 Division 45			
etwork	303	08-Sep-08 A	06-Nov-09	11-Sep-08	07-Jul-09							F0	norete Fister	ark
wel of Effort Actual Work		ritical Remainin	ng W			Page 11 of	45					TASK filter	All Activities	1
of Effort - Remaining Work 4	• •»	Vestone										1		

APPENDIX G: PORTAL METHOD

APPENDIX G: PORTAL METHOD

$ \begin{array}{c} $
$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $

APPENDIX H: SPOT CHECKS - COLUMNS

APPENDIX H: SPOT CHECKS - SHEAR WALL

APPENDIX H: SPOT CHECKS - SHEAR WALL

	APPENDIX SHEAR W	ALL BEINFORCEMENT
0	FLEXURE:	
	jd = 0.9d = 0.9(368.8) = 241.9 in Mo = 811(16) = 12,976 ft.k Mu = ØMn = ØAsfyjd 12,976(12) = (0.9)As(60)(241.9) As = 11.9 in ²	$a = \frac{Asf_{y}}{0.85f_{cb}} = \frac{(11.9)(60,000)}{0.85f_{cb}} = 8.75$ $jd = d - \frac{a}{2} = 268.8 - (\frac{8.75}{2}) = 264.4$ $As = \frac{12.976(12)}{0.9(60)(264.4)} = 10.9 \text{ in}^{2}$
		USE (14) # 8's Av = 11.06 > 10.9 in "
ġ	TENSION CONTROLLED SECTION:	
awy	$d_{t} = 28 (12) - 1.5^{\circ} (2) = 333^{\circ}$ $\mathcal{E}_{t} = \mathcal{E}_{v} \left(\frac{d_{t} - c}{c} \right) = 0.003 \left(\frac{333 - 7.57}{7.57} \right)$	$a = \frac{(11.06)(60,000)}{0.85(6000)(16)} = 8.13"$ $c = \frac{a}{a} = 8.13/0.85 = 9.57"$
	= 0.101 > 0.005 OK	/
_		
0		
~		

Orange Regional Medical Center

